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ABSTRACT: The Bureau of Reclamation (Reclamation) plays a central management role in the Colorado River
Basin (CRB), with an increasing focus on meeting the needs of stakeholders during the current drought. One aspect
of this role involves generating five-year projections of reservoir operating conditions in the federal multi-reservoir
system. These projections are the basis for estimating the probability of shortage conditions, which are relied on by
stakeholders, and are particularly important during drought. Currently, Ensemble Streamflow Prediction (ESP)
forecasts drive Reclamation’s Colorado River Mid-term Modeling System to produce probabilistic reservoir projec-
tions to be used in risk-based analysis and decision support for the first two years of the outlook period. The lack of
significant forecast skill beyond the first year motivates interest in alternative forecasting approaches. The CRB
Operational Prediction Testbed was created to provide a quantitative and consistent framework for assessing the
skill of streamflow forecasts and their impact on associated reservoir system projections. Reservoir system projec-
tions are evaluated by analyzing Lakes Powell and Mead operations, including projected pool elevation and operat-
ing tiers. In an initial application of this testbed, ESP forecasts were compared to experimental streamflow forecasts
to assess their skill impact on two-year reservoir projections, which are critical information for managing drought.

(KEYWORDS: benchmarking, streamflow forecasts; Colorado River; drought; reservoir operations; testbed;
water resources management.)

INTRODUCTION

The Colorado River is a critical resource in the
Western United States (U.S.) that is used to meet
water supply, power, environmental, recreational,
and cultural needs across seven states, 30 federally
recognized tribes, and northern Mexico. In 1995, a

special edition of the Journal of the American Water
Resources Association contemplated how the Colorado
River System could be managed under a hypothetical
severe, sustained drought (JAWRA 1995). Since its
publication, a multi-decadal drought has descended
upon the Colorado River Basin (CRB), greatly dimin-
ishing the vast storage designed to weather periods
of low flows. Recognizing this hydroclimate reality, a
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new special edition of papers commemorating the
25th anniversary of the earlier collection has been
assembled, to which this paper contributes. Since
1995, Lakes Powell and Mead, two reservoirs that
make up over 80% of the storage in the CRB,
declined from being over 90% full in 2000 to hovering
around 30% full in early 2022, and are now nearing
critical, drought-relevant operational thresholds (U.S.
Bureau of Reclamation 2021). Beginning with the
adoption of the Colorado River Interim Guidelines for
Lower Basin Shortages and Coordinated Operations
of Lake Powell and Lake Mead (Interim Guidelines)
in 2007, multiple policies designed to manage the sys-
tem through drought and low reservoir conditions
have been implemented (U.S. Bureau of Reclama-
tion 2020). Major components of these policies hinge
on Bureau of Reclamation (Reclamation) projections
of future reservoir elevations, and many stakeholders
rely on mid-term projections (1- to 5-year lead times)
of reservoir conditions to plan for their own future
water use and management activities.

Reclamation uses operational planning models to
produce outlooks of reservoir elevations and operating
conditions five years to multiple decades into the
future. Reclamation’s Colorado River Mid-term Model-
ing System (CRMMS) (formerly referred to as the Mid-
Term Operations Model, or MTOM) is one of the mod-
els used to produce probabilistic reservoir operational
projections that provide risk-based analysis and deci-
sion support for five-year outlooks, though in the past,
simulations for only the first two years were produced
operationally. CRMMS is driven by streamflow fore-
casts produced by the National Weather Service (NWS)
Colorado Basin River Forecast Center (CBRFC) using
Ensemble Streamflow Prediction (ESP; Day 1985).
ESP forecasts are produced using a hydrologic or land
surface model initialized with recent weather informa-
tion to represent current basin conditions, and then
forced into the future forecast period with temperature
and precipitation sequences. The future meteorological
inputs typically incorporate weather forecasts for the
first 5–15 days, followed by an ensemble of historical
temperature and precipitation sequences that extend
to the end of the forecast period. ESP forecasts can be
highly skillful when initial watershed conditions such
as observed snow water equivalent (SWE) and soil
moisture strongly influence the forecast, but lack skill
at longer leads (e.g., six months and longer) when cli-
mate forcings drive forecast skill (Wood and Letten-
maier 2008; Wood et al. 2016). The resulting ensemble
of forecasted streamflow sequences, also called “traces”
(Franz et al. 2003), outline the combination of esti-
mated watershed conditions with uncertainty about
future watershed climate inputs.

Skillful projections can give advance warning of
the need for actions to mitigate future stresses on the

system. Despite the central importance of these projec-
tions in preparing Reclamation and stakeholders to
take action in the midst of severe, sustained drought,
few substantive changes have been made to the fore-
casting methods that inform these operating policies
since the models and methods were introduced decades
ago. The current drought has underscored the need to
improve the accuracy of future basin hydroclimate pro-
jections and storage conditions to meet the needs of
CRB stakeholders. Although various CRB-focused
studies have explored improvements to streamflow fore-
casts in the context of drought and a changing climate
(e.g., Regonda et al. 2011; Lehner et al. 2017; Baker
et al. 2021; Woodson et al. 2021; Towler et al. 2022), it
has proven difficult to incorporate new approaches that
might improve projections of future CRB system condi-
tions without an effective and quantitative way to
assess the new methods’ potential value to reservoir
operations. A structured approach is needed to ingest
and evaluate the latest science, tools, and datasets to
inform decisions regarding upgrades to improve mid-
term projections. With this motivation, we have created
the first objective testbed system and framework that
can be used to evaluate the impacts of different stream-
flow forecasts on CRB reservoir operations. The Color-
ado River Basin Operational Prediction Testbed
(CRBOPT) adopts a standard set of metrics that are
applied to intercompare different inflow forecast
approaches— the focus of this paper’s demonstration.

This paper is organized as follows: the next section
provides background perspective on streamflow fore-
casting and mid-term operations modeling and reser-
voir operating policies in the CRB. This is followed by
a description of the CRBOPT framework, perfor-
mance metrics, and the streamflow forecast
approaches that are evaluated in this initial CRBOPT
study. The results of CRBOPT are then presented,
followed by discussion and conclusions.

BACKGROUND

Streamflow Forecasting

The water management community has long been
interested in improved inflow forecasts, as well as
refining the understanding of the skill of streamflow
forecasts and their proper interpretation and value
for resulting reservoir operations, with the ultimate
goal of developing operating policies that optimally
utilize hydrologic forecasts. Since the 1940s, U.S. fed-
eral agencies have provided reservoir inflow forecasts
that are used in various ways by the reservoir man-
agement community (Pagano, Robertson, et al. 2014;
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Pagano, Wood, et al. 2014; Wood et al. 2016; Lukas
and Payton 2020). Reservoir management approaches
vary by agency and institution and with the complex-
ity of operational objectives; in some settings, opera-
tions policies have inherent flexibility to harness
forecast information, while in others, operating poli-
cies are more constrained (i.e., involving fixed reser-
voir storage or elevation rule curves) and may
minimize the risk over average hydrologic conditions
but potentially sacrifice efficiency during unusual
hydrologic regimes (Raff et al. 2013). Inflow forecasts
have been used for multiple decades in varying
degrees around the world to inform reservoir opera-
tions, with relatively more advancement and sophisti-
cation in private sector settings that have a financial
incentive for operational efficiency (such as for hydro-
power) (Duan et al. 2018). In recent years, the term
“Forecast-informed Reservoir Operations” (FIRO) has
been popularized in the U.S. as a result of a
California-based pilot initiative to improve reservoir
management through balancing flood prevention
releases with water storage retention for water sup-
ply with the aid of forecasts (Jasperse et al. 2017;
Delaney et al. 2020). This expansion of reservoir
management strategies in the FIRO project was facil-
itated, for the particular reservoirs of the pilot study,
by a 2016 policy change of the U.S. Army Corps of
Engineers to allow reservoirs to be operated in
response to forecasts, vs. solely knowledge of “water
on the ground” — that is, current observations (but
not forecasts) of streamflow and reservoir levels.

Improving operations by utilizing streamflow fore-
casts ideally requires a detailed understanding of the
skill characteristics of the forecasts as well as their
potential impact on release decisions. Recent studies
have demonstrated that the precise connection
between streamflow forecasts and reservoir opera-
tions (projections of releases) can be complex and dif-
ficult to characterize comprehensively (Denaro
et al. 2017; Turner et al. 2017; Giuliani et al. 2020).
Anghileri et al. (2016) created a framework to explore
the response of reservoir operations to streamflow
forecasts at seasonal and inter-annual time horizons
in snow-dominated river catchments. They found
optimal reservoir management needed reliable
streamflow forecasts at inter-annual leads, especially
during periods of drought, while seasonal scale fore-
casts were less useful. Turner et al. (2017) assessed
streamflow forecast impact based on the particular
operating objective of a reservoir. They found that
accurate forecasts substantially improved reservoir
operations in reservoirs that operate to meet a target
water elevation, while forecast accuracy did not nec-
essarily translate into improved reservoir operations
to meet a supply objective. These studies show that
streamflow forecast skill does not translate linearly

into improved reservoir operations and may need to
be investigated based on the specific needs of each
particular basin of interest. On the whole, these find-
ings are not surprising: in more single-objective loca-
tions, there may be a direct relationship in which the
release is a function of the storage and projected
inflow, while in multi-objective locations or multi-
reservoir systems, myriad factors in addition to pro-
jected inflows typically determine or constrain
releases, and the constraints are system state depen-
dent (i.e., becoming active near operating thresholds).

The general finding that skillful inflow forecasts can
increase the efficiency of reservoir management has
nonetheless been demonstrated in many settings. In a
CRB-relevant example, Regonda et al. (2011) evaluated
how increased streamflow forecast skill translates to
improvements in operations and decision variables in
the Gunnison River Basin, a tributary within the CRB.
A nonlinear regression was used to create a multi-
model ensemble streamflow forecast informed by large-
scale climate information. Streamflow forecasts were
then run through an operations model, which projected
outflow, storage, and power production at Blue Mesa
Reservoir. The study found that streamflow forecast
skill transferred to operational skill at long lead times,
though nonlinearly. Another study by Sankarasubra-
manian et al. (2009) investigated the role of streamflow
forecasts produced by principal component regression
and informed by monthly updated precipitation fore-
casts in a reservoir simulation model in the Philippines.
Using forecasts was found to reduce spill, increase allo-
cation for hydropower during above-normal years, and
help meet end of season storage targets for below-
normal years. Due to the readily achievable manage-
ment benefits of inflow forecasts, they are widely used
in reservoir operations, including the CRB.

CRB Reservoir Operations and Management

Unlike many other river systems, the CRB can
store substantial volumes of water — estimated at
about four times the historical annual flow (Chris-
tensen et al. 2004). Thus, the CRB has a large stor-
age buffer to supply water during prolonged periods
of drought, though this system reliability depends on
periodic wet years to refill the system. This rare stor-
age to inflow ratio has led to a focus on multi-year
projections of inflow as operational decision inputs in
the CRB. In contrast, common long-lead forecasts in
the Eastern U.S., where hydrology does not have a
pronounced seasonal summer dry period, have a
three-month lead time, and most systems in the west-
ern U.S. that have only a storage for a year’s supply
rely on only seasonal to one-year long forecasts. In
the CRB, the two-year projection of reservoir system
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conditions (the “24-Month Study”) has long been an
official information product for management, and
more recently operational inflow forecasts issued from
CBRFC and reservoir system projections issued by
Reclamation extend to five years. The ability for the
large storage and associated releases to have state-
dependent predictability for five years (vs. systems
that empty and refill every year), and the complex
planning and inter-party negotiation (involving multi-
ple state and treaty obligations) required to plan for
and manage critical conditions has driven the
demand for the CRB’s unique multi-year predictions.

The importance of advancing capabilities for skillful
inflow and system projections, particularly in the face
of the current multi-decade drought and depleted stor-
age, motivates the need for an objective framework
that can be used to evaluate the impacts of different
streamflow forecasts on CRB reservoir operations, to
allow for benchmarking alternative strategies for
improving such forecasts. This capability did not exist
in prior years, and the adoption of new forecasting
approaches has been relatively slow. The same water-
shed models and fundamental forecasting approach
(ESP) have been used operationally for almost two
decades for inflow prediction, albeit with software
changes and improvements to meteorological inputs.
Changes to such a critical information input for a com-
plex and high-stakes, multi-party water resource are
inherently challenging, but the inability to effectively
quantify strengths and weaknesses of new forecasting
models, data, and methods surely presents one hurdle
to assessing the impact of new advances and making
informed decisions about their adoption.

To address this situation, we have developed the
CRBOPT for assessing the skill of both streamflow
forecast inputs and the associated accuracy of
CRMMS operational projections. This paper demon-
strates the aspects of the CRBOPT capability through
the analysis of a streamflow hindcast dataset (pro-
duced in a previous study from Baker et al. 2021)
and associated operational projections. In particular,
the water year (October 1 through September 30)
accumulated flow is analyzed at lead times from 1 to
24 months ahead of the end of the accumulation per-
iod. The associated CRMMS projections of Lake Pow-
ell and Lake Mead operations, including pool
elevation and outflow, and accuracy in predicting
operating tiers and shortage and surplus conditions
are analyzed with CRBOPT. CRBOPT is described in
more detail in the following section.

CRB Water System Modeling

Colorado River Mid-term Modeling System is built
in RiverWare, a generalized river basin modeling

software platform (Zagona et al. 2001), and produce
monthly reservoir projections and system conditions
out five years, though we will focus on the two-year
planning horizon for this analysis due to the type of
forecasts that are analyzed. CRMMS can be run in
two different modeling modes, Ensemble Mode and
24-Month Study Mode. The 24-Month Study Mode is
a deterministic simulation used to produce the 24-
Month Study, which is used for official operating
decisions for operations of Lake Powell and Lake
Mead. Reservoir operations for the 24-Month Study
are manually set by reservoir operators. In contrast,
CRMMS in Ensemble Mode, which we will refer to as
CRMMS in this paper, is primarily used for risk-
based analysis and planning with a focus on produc-
ing mid-term probabilistic projections of future CRB
conditions. CRMMS uses rule-based “if-then” logic
scripted using the RiverWare software to automate
simulation of reservoir operations. Since CRMMS
uses rule-based operations, it can be readily used to
study how changes to model inputs, such as stream-
flow forecasts, affect reservoir operations.

The CRB is split into two subbasins with distinct
geographic and climatic differences. The Upper Basin
is the watershed above Lee Ferry, Arizona, where
80%–90% of the Colorado River flow originates from
snowmelt in the Rocky Mountains (Christensen
et al. 2004; Vano et al. 2012; Lukas and Payton 2020).
The Lower Basin, located below Lees Ferry, is more
arid and tends to experience convective storm systems
that contribute flashy runoff and flow to the Colorado
River. The CBRFC provides ESP forecasts at 12 loca-
tions in the Upper Basin, as shown in Figure 1. The
streamflow forecasts are unregulated, meaning the
forecasted flows are the streamflows that would have
occurred if there were no regulation due to dams
upstream of the forecast point. These forecasted
unregulated flows include Upper Basin water use,
which is incorporated into streamflow through calibra-
tion of the CBRFC’s model, except for three tunnel
diversions that are projected by their operators. The
Lower Basin water uses are input to CRMMS with
projected water use schedules. Lower Basin interven-
ing flows at seven locations are set to sequences of his-
torical flows in the operational CRMMS modeling,
though in this study intervening flows will be set to
historical values.

Colorado River Mid-term Modeling System simu-
lates operations according to the “Law of the River,”
a collection of documents specifying how the Colorado
River is managed and operated (Lukas and Pay-
ton 2020). The documents include interstate com-
pacts, court decrees, the 1944 U.S.-Mexico Water
Treaty, the 2007 Interim Guidelines, the 2019
Drought Contingency Plans, and other agreements
relating to the use of the water of the Colorado River
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(U.S. Bureau of Reclamation 2021). The Interim
Guidelines provide operating criteria for Lakes Pow-
ell and Mead, including provisions designating poten-
tial delivery reductions, and allowing for greater
flexibility to conserve and store water in the system
(U.S. Department of Interior 2007). The coordinated
annual operations of Lakes Powell and Mead, speci-
fied by operating tiers, are shown in Figure 2. Pool
elevations are important criteria for the tier determi-
nations at Lakes Powell and Mead. The end-of-year
projections from the August 24-Month Study are used
to set the Annual Operating Plan for the following
year, which sets operations for Lakes Powell and
Mead. The Annual Operating Plan can be changed

mid-year due to an April adjustment, which is based
on April 24-Month Study’s projected pool elevations.
An April adjustment can cause the annual operating
tier to switch to Equalization or to balance the con-
tents of Lakes Powell and Mead in the Upper Eleva-
tion Balancing Tier.

Lake Powell has four operating tiers that prescribe
water year release volumes from Lake Powell.
Release volumes are measured in million acre-ft
(maf), a common volumetric measure used in U.S.
water resources management, which represents 1 foot
of water covering an acre of land, or 0.81 billion cubic
meters. Lake Mead has three main operating tiers
that specify deliveries to the Lower Basin states:

FIGURE 1. Map of the Colorado River Basin with Colorado River Mid-term Modeling System (CRMMS) reservoirs, forecast points, and
explicitly modeled Upper Basin diversions. A table in the bottom right describes the names of each numbered forecast location; forecast

points 1–12 are in the Upper Basin and 13–19 are in the Lower Basin. The Aspinall Unit is a series of three reservoirs: Blue Mesa, Morrow
Point, and Crystal.
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shortage, surplus, and normal conditions. Under nor-
mal conditions, the 7.5 maf apportioned to the Lower
Basin states is available for consumptive use; in sur-
plus conditions, water in excess of 7.5 maf is avail-
able; and in shortage conditions, water less than
7.5 maf is available.

DATA AND METHODS

CRBOPT Framework

The CRBOPT framework, summarized in Figure 3,
comprises multiple components. The first component
ingests streamflow forecasts and then runs the flow
forecasts through CRMMS to simulate future
monthly reservoir operations (also termed reservoir
system “projections”). This component of the

CRBOPT is implemented using the RiverWare Study
Manager and Research Tool (RiverSMART), a soft-
ware that was created to facilitate large and complex
planning studies and allows for simulating multiple
alternative hydrology or demand scenarios (i.e., dif-
ferent inflow datasets and demand estimates), run
start dates and run lengths, and different operating
policies. CRBOPT uses the capabilities of RiverS-
MART to run several streamflow forecast ensemble
datasets with varying numbers of traces through
CRMMS to produce operational reservoir projections
for the major reservoirs, for each of the inflow fore-
cast datasets. The CRBOPT “metrics” components
then run outputs from RiverSMART simulations
through a series of scripts. These scripts calculate
performance metrics for the streamflow forecasts and
the reservoir projections. The linkage of these compo-
nents forms the testbed, which in this case involves
the configuration of RiverSMART with the CRMMS
model.

Lake Powell Lake Mead

Elevation 
(ft)

Operational Tier
Active 

Storage 
(maf)

Elevation
(ft)

Operational Tier
Active 

Storage 
(maf)

3,700
Equalization Tier

equalize, avoid spills or release 
8.23 maf

24.3 1,220 Flood Control Surplus or 
Quantified Surplus 

Condition
Deliver > 7.5 maf

25.9

3,636 –
3,666 Upper Elevation 

Balancing Tier
release 8.23 maf;

if Lake Mead < 1,075 feet,
balance contents with a min/max 

release of 7.0 and 9.0 maf

15.5 –
19.3

~1,200 Domestic Surplus or ICS 
Surplus Condition

Deliver > 7.5 maf

~22.9

1,145 Normal or ICS Surplus 
Condition

Deliver ≥ 7.5 maf

15.9

3,575 Mid-Elevation 
Release Tier
release 7.48 maf;

if Lake Mead < 1,025 feet,
release 8.23 maf

9.5 1,075 Shortage Condition 1
Deliver 7.167 maf

9.4

1,050 Shortage Condition 2
Deliver 7.083 maf

7.5

3,525

3,370

Lower Elevation 
Balancing Tier

balance contents with a min/max 
release of 7.0 and 9.5 maf

5.4

0

1,025

895

Shortage Condition 3
Deliver 7.0 maf

Further actions may be taken by 
Secretary of the Interior

5.8

0

FIGURE 2. Schematic of the 2007 Interim Guidelines for the operating tiers of Lake Powell and Lake Mead with reservoir elevations, stor-
age, and description of releases measured in million acre-ft (maf). Operating tiers are based on reservoir elevations at the end of the year.
Lake Powell operating tiers set releases from Lake Powell. In operating tiers where balancing or equalization are specified, the releases from
Lake Powell are set to the amount that would result in equal storage in Lakes Powell and Mead with release constraints based on tier. The
elevation between the Equalization and Upper Elevation Balancing Tiers in Lake Powell increases each year between 2007 and 2026. Lake
Mead operating conditions specify the available water for delivery or Intentionally Created Surplus (ICS) conditions in the Lower Basin.
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The study described in this paper illustrates the
CRBOPT use through comparing different Upper
Basin streamflow forecasts and associated reservoir
system outcomes, as an estimated 80%–90% of the
flow in the CRB originates in the Upper Basin. The
forecasts assessed in this study include ESP (the cur-
rent forecasting method provided by CBRFC and used
by Reclamation), Climatology, and an experimental
forecast termed “Climate Informed k-nearest neigh-
bors” (Clim-kNN), which are described in the following
section. Upper Basin streamflow forecasts are input to
CRMMS, which simulates reservoir operations accord-
ing to the current implementation of the “Law of the
River.” A hindcast version of CRMMS that represents
reservoir operations logic back to 1981 was used in
CRBOPT. To make the forecast comparison relevant
to the present day, we applied current-day operations
for the entire hindcast period. CRBOPT hindcast sim-
ulations are initialized on the eighth day of each
month from water year 1982 through 2016 and run
for a forecast period of two years. Since the climate
data used to create the Clim-kNN forecasts are not
available until the eighth day of each month, forecasts
would only available after this, though ESP is typi-
cally available earlier in the month.

The Interim Guidelines were implemented in 2008,
though the hindcast period dates back to water year
1982. To explore operational skill for the longer hind-
cast period, we extended the set of historical “ob-
served” reservoir operations. A series of reservoir
operations approximating what would have occurred
if the Interim Guidelines had been in place since
water year 1982 was created by running CRMMS

with historical (observed) inflow values in the Upper
Basin. That is, the model was given “perfect” (to the
extent possible) streamflow information and the
resulting operations were used in place of observed
operations for the purpose of comparisons in this
study. These simulations start on each date of the
hindcast range and are used to evaluate reservoir
operational projections throughout the hindcast per-
iod. We note that CRBOPT greatly benefits from the
earlier development of CRMMS, a significant effort to
codify reservoir operations policies and rules into an
automatable system model, as well as the ability to
automate and generate streamflow hindcasting. A
testbed-like approach such as CRBOPT could include
systems models and forecasts of varying complexity
(including, e.g., reservoir optimization procedures),
provided they can be automated and run in a hind-
cast model to generate sufficient numbers of trials for
a robust assessment.

Streamflow Forecast Datasets

The CRBOPT was used to compare several alterna-
tives in streamflow forecasting methods described
below. The forecasts for water year flow are made for
lead times that both precede the water year and also
are within the predicted water year. In the latter
case, the observed flows for the water year up to the
time of the forecast are combined with the forecast
flows for the portion of the water year remaining in
the future. All streamflow forecast datasets were
available on the eighth of the month for each month
of water years 1982–2016 (i.e., October 8, 1981
through September 8, 2016). These datasets are ter-
med hindcasts to denote forecasts that were made for
past dates.

Climatology. The observed historical streamflow
(“Climatology”) was used as a forecasting baseline to
determine whether forecasts perform better than an
estimate of forecast period flow derived from the his-
torical record. Climatology ensembles are assembled
from historical flows (in this case, water years 1981–
2010), with each ensemble member or “trace” being a
historical flow sequence from a given year starting on
the date of the forecast and extending through the
forecast lead time. These ensemble hindcasts thus
contain 29 or 30 traces, due to ensembles that con-
tain a verification year dropping the observed year’s
trace to avoid including a trace with perfect knowl-
edge of the streamflow. When used as a forecast here,
Climatology begins to show skill for the water year
prediction for lead times shorter than 12 months,
when prior observed flows are combined with the
forecast.

FIGURE 3. Diagram of the Colorado River Basin Operational Pre-
diction Testbed layout. Streamflow forecasts input to CRMMS. This
study specifically assesses the three forecasts named in the left
box: Climatology, ensemble streamflow prediction (ESP), and Cli-
mate Informed k-nearest neighbors (Clim-kNN). The streamflow
forecasts are run through the water management model, CRMMS,
using the RiverWare Study Manager and Research Tool (RiverS-
MART), which allows for many streamflow types and forecast dates
to be efficiently run through RiverWare. The streamflow forecasts
and reservoir operations output from CRMMS are then analyzed
with scripts through two different sets of metrics that focus on dif-
ferent aspects of performance. The text in italics are example
entries that are tested in this study and could be adjusted for
future studies. CRPSS, Continuous Ranked Probability Skill Score.
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Climatology-Reference. A version of Climatol-
ogy where observed flows are not included is used as
a reference forecast against which the skill of the
three forecast alternatives are calculated. It is a fore-
cast of a distribution of inflows equal to historical
inflows, leaving out the hindcast year. This baseline
is “naive” in that it cannot distinguish the hydrocli-
mate of one year from another, for example, the
ensemble spread mean are similar for every year’s
forecast, allowing for the removed trace.

ESP. Ensemble Streamflow Prediction forms the
current official streamflow forecasting method used
when running CRMMS. ESP forecasts used in this
study were produced by the CBRFC using the NWS
Snow-17 and Sacramento Soil Moisture Accounting
(Sac-SMA) models (Burnash et al. 1973), which were
calibrated by CBRFC to reproduce historical condi-
tions from 1981 to 2010. Streamflows were produced
by running the watershed models with historical
temperature and precipitation sequences from the
climatological period of record (1981–2010) out
60 months, though only the first two years of the
forecast are assessed in this study. Archives of pub-
lished ESP operational forecasts were only available
from 2011 to present, which necessitated the genera-
tion of a longer period of hindcasts (from 1981 to
2010); these were contributed by CBRFC for the
CRBOPT development effort. The ESP hindcasts dif-
fer from operational ESP forecasts in that they do
not include short-term temperature and precipita-
tion forecasts or real-time forecaster modifications to
model states. Nonetheless, the hindcasts viewed by
the NWS as providing a useful though approximate
indicator of operational ESP forecast skill (Wells
et al. 2011). The ESP hindcast ensembles used in
this study have 29 or 30 traces corresponding to the
30 years of historical precipitation and temperature
traces, with the trace depending on the forecasted
year’s climate inputs (i.e., temperature and precipi-
tation sequences) removed from the ensemble to
avoid including a trace with perfect knowledge of
the climate.

Clim-kNN. Baker et al. (2021) created and evalu-
ated the disaggregated basin k-nearest neighbors
streamflow forecasting method, referred to as Clim-
kNN in this study. The Clim-kNN trace-weighting
approach weights ESP traces using North American
Multi-Model Ensemble (NMME) 1- and 3-month
watershed-scale temperature and precipitation fore-
casts, along with the preceding three-month average
observed streamflow. Using the information from
NMME, which is available by the eighth day of each
month, ESP traces are conditionally resampled, such
that ESP traces with historical climate that more

closely match NMME forecasts are weighted higher
during the resampling, to create new ensembles con-
taining 100 traces of inflows. The method is per-
formed on four Upper CRB sub-basins: the Main
Stem, Green, Gunnison, and San Juan. See Baker
et al. (2021) for a detailed description of the method.

Performance Metrics

The CRBOPT calculates a number of statistical
measures (metrics) to analyze the performance of the
input hydrology (i.e., the streamflow forecast itself)
and of the CRMMS reservoir system variables (e.g.,
releases, storages) arising from running the stream-
flow forecasts through CRMMS. Performance metrics
have been used for forecast and model evaluation in
many fields for decades and can be found in many
sources from handbooks and textbooks (e.g.,
Wilks 2011; Duan et al. 2018) to agency guidelines as
well as academic literature. Specific fields such as
reservoir system design may have unique metrics,
such as the reliability, resilience and vulnerability
metrics introduced by Hashimoto et al. (1982). In a
typical forecasting paper, authors select a small num-
ber (e.g., 1–5) of performance metrics that illustrate
behavior with respect to different characteristics such
as forecast bias, correlation, reliability or spread
errors, and different sets of metrics are appropriate
for different types of forecasts (e.g., deterministic,
probabilistic, categorical). CRBOPT is expected to
expand as it is used for future testing of different
types of inputs; thus, the metrics shown in this study
represent an initial set of potential metrics that can
be calculated by CRBOPT. For the demonstration of
CRBOPT presented in this paper, the metrics were
evaluated for a 24- to 1-month lead time from the
projection target date, which is the end of the second
water year (September 30).

Hydrology Metrics. Forecast performance is
measured in CRBOPT for different forecast attri-
butes. Due to the ubiquity of published verification
information, here we briefly summarize several com-
mon forecast attributes and concepts (Wilks 2011;
Duan et al. 2018) that we select metrics to measure.
Note, many of these forecast performance attributes
can be described by more than one statistical metric.

Accuracy is a concept reflecting the strength of
agreement between a deterministic forecast (or
ensemble forecast central tendency) and observations.
Accuracy is a measure of overall quality and may be
measured by a number of statistical metrics, includ-
ing correlation or error (for which various forms
exist, e.g., mean absolute error, root mean squared
error [RMSE], and their relative forms).
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Bias, or unconditional bias, is a measure of the
average error of the forecasts as calculated by the dif-
ference between the mean forecast and mean obser-
vations. Bias and accuracy differ; bias describes the
overall difference between average forecasts and
average observations, while accuracy is the average
difference between individual forecasts and observa-
tions.

Reliability, or conditional bias, is a measure of the
agreement between the forecast probabilities and the
observed frequency of an event. Reliability character-
izes the conditional distribution of the observations
given a set of forecasts.

Resolution is a measure of the ability of forecasts
to resolve the set of sample events into a subset of
different outcomes. Forecasts that are nearly the
same but have two different outcomes are said to
have poor resolution, while forecasts that are differ-
ent and exhibit different observed outcomes have
good resolution. Discrimination is another measure
that relates to resolution, which is a measure of how
a forecast system can discriminate between two dif-
ferent events. In probabilistic forecasts, forecasts
with no resolution have no discrimination and vice
versa (Bröcker 2015).

Sharpness refers to the relative spread of a fore-
cast and is a measure of the forecast alone (vs. its
correspondence with observations). Forecasts that
have a similar spread to climatology are said to have
low sharpness, whereas forecasts with spread much
narrower than climatology are sharp. Forecasts that
are too sharp may fail to include the observed event
at forecasted frequencies, in which case their reliabil-
ity attribute would be poor. Such forecasts are often
described as being overconfident or under-dispersed,
respectively.

Skill refers to the performance of a forecast rela-
tive to a reference forecast and is calculated through
a skill score formulation that compares the two and
translates the result into a format that can be inter-
preted as a degree of improvement (e.g., percent
improvement). The actual metric used in the skill cal-
culation for both the forecast and the reference can
vary but is often an accuracy metric.

In this study, we demonstrate the assessment of
streamflow forecast inputs to CRBOPT by evaluating
the annual water year Lake Powell unregulated
inflow. The inflow to Lake Powell is an aggregate of
all Upper Basin forecast locations and is therefore
useful in evaluating the overall quality of each fore-
cast. We report results for RMSE, a continuous rank
probability skill score, and an ensemble spread visu-
alization. These hydrology metrics are briefly
described below. Other skill metrics, including rank
histograms for reliability, were evaluated while
exploring the forecasts, though results are not shown

here. Not all attributes discussed above are reported
through metrics in the demonstration selected for
this paper.

Root mean squared error is the square root of the
squared differences between individual ensemble
traces (yi) and observations (ŷ) divided by the number
of traces in the ensemble (n); hence, it is the ensem-
ble mean RMSE for each forecast.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1 yi�byð Þ2

n
:

s

(1)

Since the errors are squared, larger errors have a
greater influence on RMSE than smaller errors.
RMSE is a measure of accuracy, and another common
calculation of RMSE is for the ensemble mean vs.
observation.

Continuous Ranked Probability Skill Score
(CRPSS) measures the accuracy of a probabilistic or
ensemble forecast relative to the accuracy of a refer-
ence forecast such as climatology (Hersbach 2000).
The CRPSS contains the continuous ranked probabil-
ity score (CRPS) metric, which is the integrated
squared difference between the cumulative distribu-
tion function of the forecasts and the corresponding
distribution of the observations. CRPS is similar to
the common ranked probability score (RPS) except it
uses a continuous distribution instead of categories,
and the units of the CRPS are the units of the fore-
cast variable. Like many skill scores, the CRPSS
ranges from 1 (perfect) to −∞, where a score of 0
means the skill of the forecast is equal to that of the
reference forecast, and a negative score means the
forecast is less skillful than the reference. The
climatology-reference is used as the reference forecast
in CRPSS calculation.

In addition to summary forecast verification met-
rics, graphical verification is also a valuable element
of forecast or model performance evaluation.
CBROPT generates an Ensemble Spread Visualiza-
tion — a scatter plot view of the forecast vs. observa-
tions in which the forecast ensemble is represented
using box and whisker symbols. Each symbol denotes
one ensemble forecast at a specified lead time. The
visualizations illustrate forecast spread, sharpness,
bias, and discrimination at multiple lead times. A
forecast with minimal bias and acceptable reliability
would typically straddle the 1:1 line, indicating that
the ensemble forecast range contains the observed
flow. An “overconfident” forecast can be seen to be
under-dispersed, with overly narrow spread, while
the reverse is also possible. Ideally, an ensemble fore-
cast is systematically unbiased and as sharp (narrow)
as possible (so as to be able to discriminate between
high and low flow events) while maintaining a spread
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that verifies with correct frequency against observa-
tions. For example, to have reliable spread, the 10th
to 90th percentile range of the forecast should enclose
the observations 80% of the time, and neither more
nor less.

Reservoir System Metrics. Operational reser-
voir system metrics are designed to assess and inter-
compare operational projections resulting from
variations in inputs (e.g., flow forecasts) and reservoir
operations policies. We demonstrate this CRBOPT
evaluation capability to compare different streamflow
forecasting strategies, focusing on the ability to project
Lakes Powell and Mead end-of-water year pool eleva-
tion, using the RMSE as the performance metric. In
addition, because the pool elevations are operationally
significant from the standpoint of different pool eleva-
tion thresholds, categorical forecast metrics are partic-
ularly appropriate — that is, the ability to predict the
elevation category that the pool elevation will reach in
the future accurately. Categorical scores, including the
Percent Correct and Heidke Skill Score (HSS), were
calculated on projected operating tiers at Lakes Powell
and Mead per the Interim Guidelines.

Percent Correct is a categorical score ranging from
0% to 100% that measures accuracy as the percent of
ensemble members (traces) for which the model pro-
jects the correct operating tier for each reservoir.

Heidke Skill Score is a categorical score that
assesses the accuracy of the forecast in predicting the
correct operating tier relative to that of random
chance. The HSS is a measure of skill for categorical
events (Heidke 1926). The score ranges from 1 to −∞,
where 1 is a perfect skill score, 0 indicates skill equal
to random chance, and negative values indicate skill
worse than random chance.

We note that performance of the reservoir system
projections is determined both by the accuracy of the
inflow forecasts and the agreement between the
CRMMS representation of operational policies com-
pared to actual operations. In this study, we do not
attempt to separate the two contributions to potential
forecast skill or error, but rather illustrate how
CRBOPT can be used to quantify the impacts of
choosing between several different inflow forecasting
strategies.

RESULTS

Hydrologic Forecast Comparison

The streamflow forecasts were run through the
hydrology metrics scripts to analyze the annual water

year unregulated inflow to Lake Powell. Inflows on a
water year basis were used in this analysis because a
water year is a widely used time scale to assess river
flow in water management, and it is operationally
important in the Upper Basin since Lake Powell
operates to meet a water year release volume. The
RMSE of Climatology, ESP, and Clim-kNN are shown
in Figure 4 for a 24- to 1-month lead time. In this
paper, we define the lead time to be the time from
the initialization of the forecasts to the end of the
forecast volume accumulation period so that all lead
times shown in the analyses below are positive. In
other forecast literature, the convention of defining
lead time from the forecast date to the start of the
forecast period is also common. Since we are comput-
ing an annual flow volume, the forecast includes
observed flows once the lead time is less than
12 months — that is, the forecast is initialized within
the predicted annual flow period. Therefore, as the
lead decreases beyond the 12-month initialization,
more months of observed flows are included in the
forecast causing the skill and accuracy to increase.

In the out-year or second year, defined as leads of
24 to 13 months, forecasted RMSE values remain rela-
tively constant. A forecast’s errors start to decrease into
the forecasted water year at leads less than 13 months.
This is partially due to observed flows being incorpo-
rated into the water year volume but is also largely
due to knowledge of antecedent basin conditions such
as soil moisture. Early season soil moisture often con-
tributes moderately to streamflow forecast accuracy
and skill (Wood and Lettenmaier 2008; Koster
et al. 2010; Wood et al. 2016), with fall soil moisture
impacts thought to contribute a minor influence (up to
approximately 10%, depending on location) of the
spring runoff volume variability (Harpold et al. 2017).
The seasonal (April–July) runoff or flow predictability
associated with both initial soil and snow conditions
can be as high as 90% in terms of forecast variance
explained or reduction in error (Franz et al. 2003;
Pagano et al. 2009) with the obtainable skill depending
on variations in watershed hydroclimate and the date
of forecast. The effect of antecedent basin conditions
can be seen with ESP forecast improvements over Cli-
matology in the fall of the forecasted year. CRB stream-
flow forecast accuracy is highly dependent on snow in
the high mountain regions in the spring. This relation-
ship is highlighted for ESP and Clim-kNN forecasts in
late winter from January at a nine-month lead to April
at a six-month lead, as errors decrease substantially
compared to Climatology.

Throughout the 24-month leads, the Clim-kNN
forecast is more accurate than other forecasts. At
shorter leads (i.e., April six-month lead to the end of
the water year), the Clim-kNN forecast has smaller
errors than ESP, but the relative improvement is
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smaller than at longer leads. ESP and Clim-kNN
both have improved accuracy over Climatology for all
leads as they are informed by initial conditions or, in
the case of Clim-kNN, by NMME climate forecasts.
Clim-kNN forecasts are found to be better than the
ESP forecasts for the RMSE metric at a statistical
significance level of p = 1e-7 depending on lead time,
using a two-sided t-test.

At long leads from 24 to 13 months, the CRPSS of
most forecasts are close to climatology (zero line), as
seen in Figure 5. The Clim-kNN forecast has a larger
range of skill compared to ESP, with ESP and Clim-
kNN forecasts having median skill close to zero. Cli-
matology is being compared to itself, though the
observed trace is dropped from the Climatology fore-
cast, introducing a small amount of noise to the skill.
When only considering forecast skill, there is no ben-
efit to using the ESP or Clim-kNN forecast over Cli-
matology during this out-year period.

The skill of both the ESP and Clim-kNN forecasts
increases above Climatology in the fall of the out-
year, starting in November at an 11-month lead. This
is consistent with RMSE results and show that soil
moisture, SWE, and other initial basin conditions
have a positive impact on the forecast. As the season
progresses through winter and early spring (leads of
10 to 6 months), the CRPSS of ESP and Clim-kNN
increases as more snow accumulation is observed,
which represents a storage of water that will melt
during the runoff season. The skill continues to
increase through the runoff season as more months
in the annual inflow are observed.

From the CRPSS perspective, the median skill of
the Clim-kNN method is slightly higher than the
ESP forecast during certain months in the current
year (e.g., December, January, and June at the 10-,
9-, and 4-month leads), but during most of this period
their skill is roughly equal. The range of skill with
the Clim-kNN method is larger than ESP at longer
leads until May at a five-month lead. The skill of Cli-
matology performs poorly since it has no knowledge
of initial conditions in the basin or what the future
climate may look like. During the last two months of
the water year, Climatology performs slightly better
than ESP and Clim-kNN forecasts, which can too
tightly constrain forecasted streamflow for August
and September.

A visualization of annual water year Lake Powell
unregulated inflow spread for Climatology, ESP, and
Clim-kNN is shown in Figure 6. At longer leads of 24
to 12 months, the ESP and Climatology forecasts are
very similar and lack discrimination with all fore-
casts projecting similar flows. The Clim-kNN fore-
casts have a smaller spread than the ESP forecasts
(i.e., smaller boxplot range), showing that the forecast
may be too sharp and overconfident for such long
leads. The smaller spread effects the accuracy of the
forecast, resulting in higher accuracy for Clim-kNN
as shown by lower RMSE values in Figure 4. The
ESP forecasts start to discriminate from Climatology
in the fall (October at a 12-month lead), with the
ESP forecasts range and median forecasting different
ensemble medians and range compared to the Clima-
tology ensemble. By a 10-month lead in December,

FIGURE 4. Root mean squared error (RMSE) of water year Lake Powell unregulated inflow. The RMSE at a 24- to 1-month lead is com-
pared for Climatology, ESP, and Clim-kNN. The forecasts are available from 1982 to 2016. Each boxplot includes one data point for each

year, totaling 35 data points. The x-axis shows the “month/number of lead months” to the end of the water year.
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the ESP and Clim-kNN forecasts tighten; forecasts in
the highest observed years starting to discriminate
from lower and average flow years as shown by box-
plots move closer to the observed flows. The spread of
the Climatology forecast remains large, as the fore-
cast only narrows when large flows are observed
(e.g., starting in the runoff season). The smaller
spread of the ESP and Clim-kNN forecasts compared
to Climatology is the attribute that causes these fore-
casts to have higher accuracy, as shown as a lower
RMSE in Figure 4. This is also apparent when com-
paring Clim-kNN and ESP, as the range of Clim-
kNN is narrower at all leads causing higher accuracy
compared to ESP. The reduction in spread does not
necessarily improve the forecast performance, as
shown by CRPSS (see Figure 5). The Clim-kNN skill
is more variable than ESP, especially at longer leads
as shown by the wide box and whisker range in the
out-year, which is not a desired forecast quality.

By February (eight-month lead), the ESP and
Clim-kNN forecasts’ spreads narrow, especially the
25th–75th quartiles of the ensembles. The Clim-kNN
forecast spread remains narrower than the ESP fore-
cast through the end of the water year. Both fore-
casts capture the high inflows well as seen by the
boxplots of higher observed inflows (greater than

~12 maf) moving upwards toward forecasting an
ensemble of above average inflows. In April at a 6-
month lead, both forecasts’ spreads have narrowed
significantly, in some instances to exclude the
observed streamflow. The Clim-kNN forecasts have a
narrower spread, with median flows closer to the 1:1
line, though the ESP forecast’s spreads capture
observed flows better. By June (four-month lead), fore-
casts show overconfidence; many ensembles are too
narrow and do not capture the observed streamflow.
At shorter leads than June, it is hard to discern the
spread of the forecasts since most forecasts have con-
verged on the 1:1 line. Because it is based on ESP,
Clim-kNN relies on a strategy that does not represent
uncertainty or bias in modeled initial watershed condi-
tions, as discussed in Wood and Schaake (2008). All
forecasts made via ESP or ESP-based methods there-
fore suffer from overconfidence at times in the year
when the predictability associated with initial condi-
tions is high, such as the spring snowmelt season or
early summer in the Western U.S.

The most extreme years in this hindcast period are
difficult to capture in the ensemble spread at
extended lead times since the trace containing the
historical weather that produced the extreme stream-
flow was removed from the forecast. For instance,

FIGURE 5. CRPSS of water year Lake Powell unregulated inflow. CRPSS at a 24- to 1-month lead is compared for Climatology, ESP, and
Clim-kNN. The forecasts are available from 1982 to 2016. Each boxplot includes one data point for each year, totaling 35 data points. The

x-axis shows the “month/number of lead months” to the end of the water year.

FIGURE 6. Ensemble spread visualization of water year Lake Powell unregulated inflow for Climatology, ESP, and Clim-kNN with boxplots
of the forecast vs. the observed Lake Powell water year annual unregulated inflow (1982–2016) for leads of 24, 12, 10, 8, 6, 4, and 2 months.
The boxplot’s whiskers represent the full range of the forecast, the box is the 25th–and 75th quantiles, and the midline represents the fore-
cast median. The shortest lead times appear in the scatter plots toward the top of the figure. The shortest lead times appear in the scatter

plots toward the top of the figure.
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2002 has the lowest streamflow in the analyzed per-
iod. The 2002 ESP ensemble (farthest left in boxplot)
does not capture the observed streamflow (1:1 line)
because no weather traces from ESP climatology
(1981–2010) were as dry or close to as dry as the
2002 trace. Therefore, the forecast cannot produce
such low streamflow until very dry initial basin con-
ditions drive the forecast, as opposed to most of the
signal coming from precipitation and temperature.
This limitation is also a common concern with ESP,
in that the meteorological drivers of a future stream-
flow prediction are taken only from historically
observed sequences, which can fail to include suffi-
cient extreme members to characterize their risk of
occurrence.

Reservoir System Projection Evaluation

Reservoir system projections resulting from run-
ning streamflow forecasts through CRMMS using
RiverSMART are evaluated using reservoir system
metrics scripts, which have the capability of process-
ing many different reservoir variables. This analysis
will compare projected end-of-water year pool eleva-
tion and annual operating tiers as these variables
provide a summary of other reservoir related vari-
ables including reservoir outflow.

The RMSE of projected Lakes Powell and Mead
end-of-water year pool elevations for Climatology,
ESP, and Clim-kNN forecasts are compared in Fig-
ure 7. Lake Powell has larger RMSEs at all leads
compared to Lake Mead because the inflows to Lake
Mead are controlled by Lake Powell, which releases a
smaller range of flows compared to the potential vari-
ability of Lake Powell inflow. At all leads, Clim-kNN
outperforms ESP, and Climatology performs the worst.
This result is consistent with the RMSE of Lake Pow-
ell unregulated inflow (Figure 4), as the inflow is the
main factor in projected pool elevation. For Lake Pow-
ell at a 24-month lead, the RMSEs for the forecasts
are large with a median RMSE of 44.0, 35.6, and
24.6 ft for pool elevation and 4,920, 3,990, and
2,770 kaf for storage for Climatology, ESP, and Clim-
kNN, respectively. The RMSEs for ESP and Clim-
kNN are much smaller than Climatology from Jan-
uary through July of the current year, as streamflow
forecasts gain more skill and sharpness. By April at a
six-month lead, the median RMSE for forecasts have
decreased to 27.3, 12.2, and 7.8 ft (or 3,220, 1,340, and
880 kaf) for Climatology, ESP, and Clim-kNN, respec-
tively. The RMSE continues to decrease through the
end of the water year, with the errors from ESP and
Clim-kNN converging to similar values.

For Lake Mead, RMSE decreases relatively lin-
early with median RMSE values at a 24-month lead

of 25.3, 19.5, and 14.0–11.6, 3.5, and 1.7 ft at a six-
month lead for Climatology, ESP, and Clim-kNN,
respectively. For median RMSEs in storage, this is
equivalent to a decrease from 2,950, 2,300, and
1,580 kaf to 1,360, 433, and 211 kaf for Climatology,
ESP, and Clim-kNN, respectively. Similar to the
Lake Powell results, the Clim-kNN forecast has the
lowest errors, followed by the ESP forecasts. Clima-
tology has a slightly different trend in reduction of
RMSE compared to the other forecasts, with minimal
decrease in RMSE until the runoff seasons during
the out-year and the current year. This is because
the Climatology forecast does not have accuracy until
part of the runoff volume has been observed. By the
end of the runoff season, ESP, and Clim-kNN have
very small errors. One of the main reasons for this is
that Lake Powell’s releases for the remainder of the
water year are mostly known after April.

Another important performance metric to assess is
correctness of the projected operating tiers for Lakes
Powell and Mead, as compared to the observed tiers,
given reservoir operations. The operating tiers, which
are defined in the Interim Guidelines and summa-
rized in Table 1, determine the releases from Lake
Powell. The operating condition at Lake Mead sets
deliveries in the Lower Basin. We evaluate the fore-
casted operating tiers using categorical scores based
on the tier alone as well as the combined tier and
Lake Powell release or Lake Mead condition. The
Lake Powell releases in each release category can be
within a given range as exact release volume can
vary within a given tier.

The forecast metrics Percent Correct and HSS are
categorical metrics used to analyze projections of
operating tiers and releases or conditions for Lakes
Powell and Mead. The categorical metrics are calcu-
lated from a multi-category contingency table that
represents the frequency of forecasts and observa-
tions in each category for the 35 forecasts. The met-
rics are evaluated on two different contingency
tables, each representing a different scale and repre-
sented by the columns in Table 1. The “Tier” results
are based on broad categories and therefore have
higher scores than the “Tier & Release/Condition”
categories, which require the simulation to correctly
determine the release for Lake Powell or condition
for Lake Mead as well as the operating tier. The cate-
gorical scores for Climatology, ESP, and Clim-kNN
streamflow forecasts are compared to historical
streamflow projected operations for leads in January,
April, and August of the out-year for 1982–2016.

The Percent Correct results in Table 2 show that
Lake Mead projections perform better than Lake
Powell projections when predicting both the tier and
release or condition. This is expected as inflows to
Lake Mead are mostly determined by Lake Powell’s
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releases, which have less variability due to regulation
and thus are easier to predict than Lake Powell’s
inflows. Lake Mead’s pool elevation also has smaller
errors at longer leads compared to Lake Powell (see
Figure 7) for the same reason. All streamflow forecast
operational projections for Lake Mead perform well
at the longest lead in January, including Climatology.
For Lake Powell, the predicted “Tier” determinations
perform relatively well, especially by August; how-
ever, the “Tier & Release/Condition” projections are
not as accurate. It is more difficult to get both these
categories correct when there is a wide variety of dif-
ferent forecasted inflows at longer leads. The HSS in
Table 3 shows similar results to the Percent Correct,
except with lower values since we are comparing the
forecasts to random chance.

When comparing the forecasts, Clim-kNN and ESP
always perform better than Climatology, since Clima-
tology is an uninformed forecast, while Clim-kNN
performs slightly better than ESP. The largest

FIGURE 7. RMSE of end-of-water year pool elevation of Lakes Powell and Mead. Climatology, ESP, and Clim-kNN are compared to histori-
cal streamflow projected pool elevations (1982–2016).

TABLE 1. Operating tiers and releases or conditions used in cate-
gorical scores based on the Interim Guidelines.

Reservoir Tier Release/condition

Lake Powell Equalization Annual release > 8.23 maf
Annual release = 8.23 maf

Upper Elevation
Balancing

Annual release >8.23 maf
Annual release = 8.23 maf
Annual release <8.23 maf

Mid-Elevation
Release

Annual release = 8.23 maf
Annual release = 7.48 maf

Lower Elevation
Balancing

Lower Elevation Balancing
Tier

Lake Mead Shortage First level (Mead ≤1,075
and ≥1,050)

Second level (Mead < 1,050
and ≥1,025)

Third level (Mead < 1,025)
Surplus Any except flood control

Flood control
Normal Normal or ICS surplus

condition
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performance differences are in August, likely due to
climate forecasts improving Clim-kNN performance
slightly over ESP. Specifically, these improvements
are due to Lake Powell’s projections of Equalization
and Upper Elevation Balancing, especially when the
observed tier is an Equalization release equal to
8.23 maf or an Upper Elevation Balancing release
above 8.23 maf. The Climatology forecasts for the
“Tier & Release/Condition” perform fairly well, espe-
cially at Lake Mead, because the starting reservoir
system storage levels provide a dominant part of the
forecast signal for the end-of-period levels. This fea-
ture is likely to be truer of Lakes Powell and Mead,
which combined can hold up to four years of the long-
term average natural flow, than for smaller reservoir
storage systems.

DISCUSSION AND CONCLUSIONS

The CRBOPT provides a foundation for the sys-
tematic evaluation of inflow forecasts that represent
the Upper Basin hydrologic and basin-wide opera-
tional projections. While this study used a two-year
forecast, the framework is extensible to longer peri-
ods. CRBOPT is a framework for analyzing stream-
flow forecasts through metrics assessing the error,

skill, spread, and discrimination of the Lake Powell
annual water year unregulated inflow. Streamflow
forecasts are run through CRMMS to simulate opera-
tional projections and are evaluated using metrics
including CRMMS projected pool elevations and oper-
ating tiers and conditions at Lakes Powell and Mead.
The testbed is built to process any streamflow fore-
casts with a specific protocol that allows for an objec-
tive comparison of operational and experimental
streamflow forecasts, though its scope could be
expanded for other projects. The value of CRBOPT is
that it will identify, quantitively and consistently, for
the first time, the relative merits (strengths and
weaknesses, skill attributes) of streamflow inputs to
CRMMS, and how those propagate into reservoir
variable prediction performance; it can also allow for
intercomparison of different constraints or strategies
in CRMMS that might be warranted given extreme
conditions during drought or even as presented with
hypothetical future climate or system change-related
factors.

This study used CRBOPT to compare three ensem-
ble streamflow forecasts: Climatology, ESP, and
Clim-kNN. The baseline forecast for this analysis was
Climatology, though a baseline forecast could be an
existing forecast. Both hydrology and reservoir sys-
tem projection metrics were processed, yielding a
variety of metric-dependent results. It is important to
assess both sets of metrics, as the relationship

TABLE 2. Percent correct for climatology, ESP, and Clim-kNN vs. historical streamflow projected operating tiers from the out-year in Jan-
uary, April, and August at a 12-, 8-, and 5-month lead to the end of the calendar year when operational decisions are determined.

Reservoir Streamflow forecast

Tier Tier & release/condition

January, % April, % August, % January, % April, % August, %

Lake Powell Climatology 68 69 83 54 55 67
ESP 71 75 86 57 62 69
Clim-kNN 71 76 86 60 63 71

Lake Mead Climatology 94 95 100 94 95 100
ESP 99 99 100 99 99 100
Clim-kNN 99 100 100 99 100 100

TABLE 3. Heidke Skill Score for climatology, ESP, and Clim-kNN vs. historical streamflow projected operating tiers from the out-year in
January, April, and c at a 12-, 8-, and 5-month lead to the end of the calendar year when operational decisions are determined.

Reservoir Streamflow forecast

Tier Tier & release/condition

January April April January April April

Lake Powell Climatology 0.37 0.41 0.67 0.31 0.35 0.52
ESP 0.39 0.50 0.68 0.34 0.43 0.55
Clim-kNN 0.41 0.52 0.72 0.37 0.45 0.58

Lake Mead Climatology 0.87 0.90 1.00 0.87 0.90 1.00
ESP 0.97 0.98 1.00 0.97 0.98 1.00
Clim-kNN 0.98 1.00 1.00 0.98 1.00 1.00
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between streamflow forecasts and water resources
management is inherently nonlinear. For instance, a
marginal streamflow forecast skill increase may not
make any difference in reservoir projections due to
the operating policy, or it may cause a large improve-
ment in operational projections. When comparing
metric results, it is important consider tradeoffs
between forecast attributes such as accuracy, over-
confidence or under-confidence, and discrimination,
as well as the timing of improvements of streamflow
forecasts over the baseline.

The results from the hydrology metrics in this
study showed that at long leads (greater than one
year), all forecasts have good resolution, sharpness,
and reliability, but lack discrimination and correla-
tion skill. Clim-kNN forecasts are narrower with
smaller errors than ESP and Climatology, and likely
exhibiting minor overconfidence at long leads. ESP
and Clim-kNN outperform Climatology starting in
the fall months before the forecasted water year
when antecedent basin conditions such as soil mois-
ture begin to have influence over the coming spring
runoff season, which can impact the runoff efficiency.
By April of the forecasted year, the skill of these fore-
casts is much better than Climatology since there is
better information about basin conditions such as
snowpack. ESP has better skill than the Clim-kNN at
most leads, except a few months in the winter of the
forecasted year since Clim-kNN has knowledge of cli-
mate forecasts for 1- and 3-month leads. At shorter
leads, ESP and Clim-kNN are overconfident and have
reduced statistical reliability. These forecasts are too
sharp, with narrow spread that excludes the observed
annual streamflows more often than is predicted by
the ensemble percentiles.

For the reservoir system projection metrics, all
streamflow forecasts showed larger errors in pro-
jected end-of-water year pool elevation at longer
leads. These errors decreased during the current
year, especially by April for both reservoirs. The error
(RMSE) of Clim-kNN was lower than ESP at all
leads, likely due to the smaller spread in the Clim-
kNN forecast. The categorical scores showed that
Clim-kNN performed slightly better than ESP in
April and August of the out-year with more traces
projecting into the correct operating tier.

Each of these metrics highlights a different aspect
of the forecast performance. When considering which
forecast is “best,” it is important to look at a range of
metrics, both for hydrology and reservoir projections.
With differing performance between metrics, it can
be difficult to assess if a forecast is truly better than
another, which is where knowledge of the application
context in a specific basin can be useful. For instance,
users may find projections of reservoir elevations or
releases more relevant depending on their resource of

interest (e.g., recreation, hydropower, ecology, etc.).
The particular configuration and state of a reservoir
system clearly also influence the impact of differences
in forecast qualities (e.g., spread, mean skill) on
reservoir operations and performance. As this study
does not focus on the full cost of forecast errors to
other resource types such as hydropower or flood
damages, a potential direction of future expansion for
CRBOPT would be to include more tailored
stakeholder-focused metrics, translating the impacts
of inflow or policy alternatives beyond pool levels to
sectoral impacts. This may be a challenging step,
however, because such calculations require input and
cooperation from the stakeholder groups to develop
and share critical data and policy insights; thus,
there are added institutional considerations to con-
tend with should the CRBOPT evolve in that direc-
tion.

Considering the forecasts analyzed here, the differ-
ences in the Clim-kNN relative to ESP from the
CRPSS and RMSE perspective were moderate, show-
ing 5%–25% improvement at most lead times. This
improvement was reduced for reservoir system vari-
ables, with Clim-kNN offering slightly higher accu-
racy for both inflow to Lake Powell and projected pool
elevation, showing that improved streamflow fore-
casts can result in improvements to reservoir system
projections. For projected operating tiers, the Clim-
kNN method performs better than ESP, and further
refinement of the method is likely warranted to
explore opportunities for adding additional predictors
that could add forecast skill (such as sub-seasonal cli-
mate forecasts, year 2 climate forecasts, improved
watershed modeling or data assimilation) and to bal-
ance augmentations with the potential for overconfi-
dence, especially at longer leads.

Traditional ESP can only reflect how past climate
combines with initial conditions and produces stream-
flow, and therefore has difficulty capturing our cur-
rent prolonged drought, especially at leads beyond
the current winter. Other experimental forecasts
could be processed with CRBOPT and would be valu-
able for future use if they are able to capture a war-
mer and potentially drier climates’ impacts on
streamflow. It is critically important to improve the
prediction of extreme years both on the low and high
end, and CRBOPT will be useful in gaging the suc-
cess of new approaches that may pursue such
advances. These may come through improved esti-
mates of initial conditions (through better watershed
modeling or data assimilation of new earth observa-
tions) or advances in weather and climate forecasting
coupled with improved usage of such forecasts in
water supply prediction. Reclamation is already using
CRBOPT for various other research projects aimed at
improving reservoir system projections in the CRB
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(e.g., Woodson et al. 2021; Towler et al. 2022). These
include exploring alternative forecasting methods for
Lower Basin inflows and further exploration of Upper
Basin forecasting methods for the 2- to 5-year range,
with the hope that new methods can capture drought
and hydrologic variability more effectively, seeking to
improve projections of reservoir operations into the
future. The CRBOPT enables these studies to become
more automated, streamlining the process of explor-
ing streamflow forecasts and reservoir system projec-
tions with a common set of robust scientific metrics
to meet the needs of the CRB community.

Mid-term projections support an important plan-
ning timeframe during which Reclamation and stake-
holders prepare to act in accordance with long-term
policies. The ability to evaluate and ingest the latest
science related to mid-term forecasts will become
increasingly important as our climate warms, and the
CRB experiences more frequent periods of severe,
sustained drought not seen in recent history. This
study introduces the CRBOPT framework and illus-
trates how it can be used to explore different inflow
forecasts as they become available.
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